DEPARTMENT OF CHEMISTRY

Advanced level practical workbook

Student's Name
Combination
A' level chemistry examinations consist of three papers i.e. P525/1, P525/2 and P525/3.
Paper 3 (P525/3) is usually practical paper which is done in 3 hours. This paper consists of
three questions which are set from the three branches of chemistry as below;
Question 1: Physical chemistry
Question 2: Inorganic chemistry
Question 3: Organic chemistry
This simplified workbook consists of two parts i.e. inorganic and organic qualitative

analysis with worked examples and exercise questions. It also contains short explained and guiding notes which a student should read and understand.

For equations, refer to notes of theory and construct them in the spaces provided.

A good student does research and reads beyond what has been given in class; so be one but not a master of complaints always.

Part 1. INORGANIC QUALITATIVE ANALYSIS

Introduction

Qualitative analysis is branch of practical chemistry which deals with the identification of ions that are present in a substance by carrying out several chemical tests on it. There are two types of ions in ionic or electrovalent compound i.e. cations and anions.

Cations

These are positively charged ions. They are categorised into two major groups i.e. non-transition metal ions (non- coloured cations) and transitional metal ions (coloured cations).

a) Non-transition metal ions (non-coloured cations)

These form white compounds and colourless solutions when dissolved. They include;

Lead(II) ions, Pb²⁺

Magnesium ions, Mg²⁺

Aluminium ions, Al³⁺

Ammonium ions, NH₄⁺

Calcium ions, Ca²⁺

Zinc ions, Zn²⁺

Barium ions, Ba²⁺

Others may include;

tin(II) (Sn²⁺), tin(IV) (Sn⁴⁺) and silver ions (Ag⁺).

b) Transitional metal ions (coloured cations)

These form coloured compounds and coloured solutions when dissolved. They include;

Iron(III) ions, Fe³⁺

Iron(II) ions, Fe²⁺

Copper(II) ions, Cu²⁺

Manganese(II) ions, Mn²⁺

Nickel(II) ions, Ni²⁺

Other may include: Chromium(III) ions, Cr³⁺

Anions

These are negatively charged ions. They include;

Sulphate ions, SO₄²-

Carbonate ions, CO₃²-

Chloride ions, Cl⁻

Nitrate ions, NO₃

Hydrogencarbonate ions, HCO₃

Iodide ions, I

Bromide ions, Br

Ethanoate ions or acetate ions, CH₃COO⁻

Oxalate ions, $C_2O_4^{2-}$

Others include;

Nitrite ions (NO₂-), Sulphite ions (SO₃²-)

> Important to note

In qualitative analysis experiments, there is always a table which consists of three columns. Test/procedure being the first column followed by observation and then conclusion/deduction/inference as illustrated below.

Tests/procedure	Observations	Deductions/conclusion/inferences

- ✓ **Tests:** These are instructions given to the students stating what to do on the unknown substances or its solution in order to identify the ions present in it.
 - NB; In case the student is asked to carry out a test of his/her own choice to identify or confirm an anion or a cation present in the unknown compound, the student has to write the test he or she has performed to identify or confirm the ion asked.
- ✓ **Observation:** This is what is seen or identified by a student during and after carrying out a test. Observations should be short statements that are well summarized.

✓ **Deduction/conclusion/inference:** These are facts derived from observations and can lead to the correct identification of the ions present in the unknown substance. The deductions should correspond to the stated observations that is should follow the order in which observations are written.

NB: No correct deduction(s) is/are awarded any mark(s) if the corresponding observation(s) is/are wrong.

PRELIMINARY TESTS

These are tests that give us a clue/hint or general guidelines on the nature of the substance being analysed. Preliminary tests are majorly based on the following aspects i.e.

- Physical appearance of the substance
- ❖ Solubility of the substance
- ❖ Action of heat on the substance
- ❖ Use of common reagents such as NaOH(aq), NH₃(aq), Na₂CO₃(aq), Pb(NO₃)₂(aq) etc.

a) Appearance of the substance

The appearance of a substance based on the colour and texture of the substance given. The texture of the solid depends whether the solid is crystalline or powdery.

In terms of colour, the solid may be white, green, blue, pick/red, brown, yellow or orange, purple, violet, etc. If the solid is white, then it consists of non-transition metal ions. However, if the solid is coloured, then it consists of transition metal ions with its specific colour

Summary of the colours of given substance.

Colour	Deductions
White	Non-transitional metal ions
Green	Fe ²⁺ , Cu ²⁺ , Ni ²⁺ , Cr ³⁺ .
Blue	Hydrated Cu ²⁺ salt.
Brown	Fe ²⁺ or Fe ³⁺
Black	Cu ²⁺ or Ni ²⁺ or Fe ²⁺ or Mn ²⁺
Pink (not visible in solution)	Mn ²⁺

Violet	Cr ³⁺

Note;

- 1. In case the solid is crystalline, it has got water of crystallisation and this should be reflected in that part of heating because water is given off.
- 2. In case of making deductions about the colour of any unknown solid given, **ALWAYS** write cations because they (cations) are the ones that influence the colour of the solid.

b) Solubility of the substance given

Since qualitative analysis is mainly carried out in aqueous solutions, there is need to know which salts are soluble in water and those that are insoluble.

A student may be asked to dissolve a sample of the solid given in water and he or she is expected to make some observations and deductions. The sample may not dissolve in water but dissolves in acid. Soluble and insoluble salts are given below.

- All **nitrates** are **soluble** in water.
- All **sulphates** are **soluble** in water except those of barium and lead; Calcium and silver sulphates are sparing soluble.
- All **carbonates** are **insoluble** in water except those of sodium, potassium and ammonium.
- All hydrogen carbonates are soluble in water
- All **ethanoates or acetates** are **soluble** in water
- All halides (Chlorides, Iodides and Bromides) are soluble in water except those of silver and lead. Halides of lead are sparing soluble in warm or hot water but insoluble in cold water.
- All **chromates** are **soluble** in water except those of lead, barium and silver. Calcium chromate is sparing soluble.
- All **oxalates** are **insoluble** in water except those of sodium, potassium and ammonium.
- All **nitrites** are **soluble** in water except silver nitrite which is sparing soluble
- All **sulphites** are **soluble** in water except those of lead, barium and silver.

Making a test solution

Procedure

Dissolve a little of the substance provided e.g. a spatula endful in about 5 or 10 cm³ of water. Shake the test tube well until the substance dissolves. The solution obtained is now your test solution.

Summary of the colour of solutions formed by different compounds

Observations (colour of solution)	Deductions
Colourless	Non-transitional metal ions
Green	Fe ²⁺ , Cu ²⁺ , Ni ²⁺ , Cr ³⁺ .
Blue	Cu ²⁺
Brown	Fe ³⁺
Pink (not visible in solution)	Mn ²⁺

Note;

- 1. All soluble white compounds dissolve in water to form colourless solutions whereas soluble coloured (transition) compounds form solutions corresponding to their colours when dissolved in water.
- 2. Dilute nitric acid, sulphuric acid or hydrochloric acid can be used to dissolve insoluble salts and they also form solutions depending on the colour of the solid given.
- 3. If the substance is insoluble or partially soluble then filtering may be done. When filtering is performed, the colour of residue and filtrate must be stated with respective deduction(s).

c) Action of heat on substances

Here, candidates are instructed to heat a small quantity (usually spatula end-ful) of a solid substance in a dry clean glass tube strongly until there is no further change. A candidate is supposed to note the following while heating:

i) Evolution of a gas;

Gases may be evolved and can be identified using their smell, action on a glowing splint, effect on litmus paper or any specific reagent for that particular gas given off.

Identification of gases

Gases are normally given off when substances are heated or when acids are added to substances. A learner can know that a gas is given off through;

- ❖ Effervescence (rapid emission of bubbles) occurs. This is only seen when an acid is added to a solid.
- ❖ Colour. A few gases possess noticeable colours e.g. brown fumes for nitrogen dioxide.
- Smell. Some gases have got distinctive smells and they are usually unpleasant. E.g. ammonia (choking smell) and hydrogen sulphide (smell of rotten eggs).

After knowing that a gas is given off, it can then be identified using a chemical test.

Observation	Deduction
Colourless vapour condenses on the cooler parts of the	water of crystallization
test tube to form a colourless liquid that turns white	:. Hydrated compound
anhydrous copper(II) sulphate blue or blue cobalt(II)	
chloride paper pink.	
A colourless gas is given off that turns moist/damp blue	CO ₂ gas evolved
litmus paper red/pink and lime water milky.	\therefore HCO ₃ ⁻ or CO ₃ ²⁻ or CH ₃ COO ⁻ or C ₂ O ₄ ²⁻
A colourless gas with a chocking/irritating smell is given	NH ₃ gas produced
off that turns moist red litmus paper blue and forms dense	:. NH ₄ ⁺
white fumes with concentrated hydrochloric	
acid/hydrogen chloride gas.	
A colourless gas with an irritating smell is given off that	SO ₂ gas evolved
turns damp blue litmus paper red and orange potassium	:. SO ₄ ²⁻ or SO ₃ ²⁻
dichromate(VI) solution green.	
Reddish brown or brown gas with an irritating smell is	NO ₂ and O ₂ gases evolved
given off that turns moist blue litmus paper red and a	:. NO ₃ -
colourless gas that relights a glowing splint.	

Brown vapour that turns moist blue litmus paper red and	Br ₂ gas evolved
bleaches it.	:. Br ⁻
Purple vapour that turns moist blue litmus paper red and	I ₂ gas evolved
sublimes to form a black or purple or purplish-black solid	:. I ⁻
A greenish yellow gas with an irritating smell, turns	Cl ₂ gas produced
damp blue litmus paper red and then bleaches it.	:. Cl⁻
A colourless gas with an irritating smell, fumes in moist	HCl gas evolved
air, turns moist blue litmus paper red and forms dense	:. Cl ⁻
white fumes with concentrated ammonia.	
White fumes with sweet odour that forms white	CH ₃ COCH ₃ gas evolved
precipitate with Brady's reagent	:. CH ₃ COO ⁻
White fumes that that moist blue litmus paper red and	SO ₃ gas evolved
forms white precipitate with barium nitrate solution	:. SO ₄ ² -

Note: Students are advised to test for gases whenever they

- heat the solid
- add sodium hydroxide solution to sample and heat
- add acid to the sample

ii) Colour of residue after heating a substance

Residue is a solid that remains in a glass tube after heating or on the filter paper after filtering a mixture of a solid and a liquid. The colour of the residue helps to identify the Cation in the unknown substance and therefore needs to be carefully observed.

Summary of the colour of residue after heating.

Observation	Deduction
Residue is black	CuO or FeO or Fe ₃ O ₄ or NiO or MnO ₂
	\therefore Cu ²⁺ or Fe ²⁺ or Fe ³⁺ orNi ²⁺ or Mn ²⁺
Residue is white.	MgO or CaO or Al ₂ O ₃ or BaO
	:. Mg^{2+} or Ca^{2+} or Al^{3+} or Ba^{2+}
White sublimate.	NH ₄ ⁺

Residue is yellow when hot, white when cold.	ZnO
	:. Zn ²⁺
Residue is reddish brown when hot, yellow when cold.	PbO
	:. Pb ²⁺
Residue is brown or yellow	Fe ₂ O ₃
	:. Fe ³⁺

d) Use of common reagents Identification of cations

i) Identification using sodium hydroxide and aqueous ammonia

The main reaction between these two reagents and the cations is the precipitation of insoluble metal hydroxides. Some of these metal hydroxides dissolve in excess of these reagents forming solutions of complex ions and some do not dissolve.

Procedure

- To a small portion of the test solution, add a few drops of NaOH(aq) or $NH_3(aq)$ and shake the mixture. Check if precipitate is formed and note its colour.
- Add more sodium hydroxide solution or $NH_3(aq)$ until in excess and then shake the solution. Note whether the precipitate formed is soluble in excess alkali or insoluble in excess alkali.
- **NB**. In case no precipitate appears after adding sodium hydroxide solution, warm the mixture gently and test for ammonium ions if present or not.

Below is a summary of observations and deductions for reactions between the common cations and sodium hydroxide solution or aqueous ammonia

Expected observation(s)	Deduction(s) with;	
	NaOH(aq)	NH ₃ (aq)
White precipitate insoluble in excess.	Ca ²⁺ or Ba ²⁺ or Mg ²⁺	Al^{3+} or Pb^{2+} or Sn^{2+} or Mg^{2+} or Ba^{2+}
White precipitate soluble in excess forming a colourless solution.	Zn ²⁺ or Al ³⁺ or Pb ²⁺ or Sn ²⁺	Zn ²⁺

standing. No observable change, a colourless gas with a choking smell turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid is given off on warming. Pale blue precipitate insoluble in excess. Green precipitate soluble in excess to form a blue solution Green precipitate insoluble in excess Ni ²⁺ Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution Fale blue precipitate soluble in excess Fe ³⁺ Green precipitate insoluble in excess forming a deep blue solution. Green precipitate insoluble in excess Cu ²⁺ Green precipitate soluble in excess Cu ²⁺ Green precipitate soluble in excess Cu ²⁺ Green precipitate soluble in excess Cr ³⁺ Green precipitate soluble in excess to form a green solution.	White precipitate insoluble in excess turns brown on	Mn ²⁺	Mn ²⁺
smell turns moist red litmus paper blue and forms dense white fumes with concentrated hydrochloric acid is given off on warming. Pale blue precipitate insoluble in excess. Green precipitate soluble in excess to form a blue solution Green precipitate insoluble in excess Ni ²⁺ Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution Fale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess Green precipitate insoluble in excess Cu ²⁺ Fe ³⁺ Foreen precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	standing.		
white fumes with concentrated hydrochloric acid is given off on warming. Pale blue precipitate insoluble in excess. Green precipitate soluble in excess to form a blue solution Green precipitate insoluble in excess Ni ²⁺ Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution Ca ²⁺ or NH ₄ ⁺ Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	No observable change, a colourless gas with a choking	NH ₃ gas evolved	-
given off on warming. Pale blue precipitate insoluble in excess. Green precipitate soluble in excess to form a blue solution Green precipitate insoluble in excess Ni ²⁺ Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	smell turns moist red litmus paper blue and forms dense	NH ₄ ⁺ confirmed	
Pale blue precipitate insoluble in excess. Green precipitate soluble in excess to form a blue solution Green precipitate insoluble in excess Ni ²⁺ Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ No observable change/colourless solution - Ca ²⁺ or NH ₄ ⁺ Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	white fumes with concentrated hydrochloric acid is		
Green precipitate soluble in excess to form a blue solution Green precipitate insoluble in excess Ni ²⁺ Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ No observable change/colourless solution Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	given off on warming.		
Solution Green precipitate insoluble in excess Ni ²⁺ Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution - Ca ²⁺ or NH ₄ ⁺ Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	Pale blue precipitate insoluble in excess.	Cu ²⁺ present	
Green precipitate insoluble in excess Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution - Ca ²⁺ or NH ₄ ⁺ Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	Green precipitate soluble in excess to form a blue	-	Ni ²⁺
Green precipitate insoluble in excess, turns brown on standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ Fe ³⁺ No observable change/colourless solution - Ca ²⁺ or NH ₄ ⁺ Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	solution		
standing. Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ No observable change/colourless solution - Ca ²⁺ or NH ₄ ⁺ Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	Green precipitate insoluble in excess	Ni ²⁺	-
Brown precipitate insoluble in excess. Fe ³⁺ Fe ³⁺ No observable change/colourless solution - Ca ²⁺ or NH ₄ ⁺ Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	Green precipitate insoluble in excess, turns brown on	Fe ²⁺	Fe ²⁺
No observable change/colourless solution Pale blue precipitate soluble in excess forming a deep blue solution. Cra²+ or NH₄+ Cu²+ Cu²+ Cu²+ Cr³+ Green precipitate insoluble in excess Cr³+ - Cr³+ -	standing.		
Pale blue precipitate soluble in excess forming a deep blue solution. Green precipitate insoluble in excess - Cr³+ Green precipitate soluble in excess to form a green Cr³+ -	Brown precipitate insoluble in excess.	Fe ³⁺	Fe ³⁺
blue solution. Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	No observable change/colourless solution	-	Ca ²⁺ or NH ₄ ⁺
Green precipitate insoluble in excess - Cr ³⁺ Green precipitate soluble in excess to form a green Cr ³⁺ -	Pale blue precipitate soluble in excess forming a deep	-	Cu ²⁺
Green precipitate soluble in excess to form a green Cr^{3+}	blue solution.		
	Green precipitate insoluble in excess	-	Cr ³⁺
solution.	Green precipitate soluble in excess to form a green	Cr ³⁺	-
	solution.		

Assignment 1

Write ionic equation(s) (if any) for the reaction(s) between the metal ions and sodium hydroxide
solution and aqueous ammonia.

©Mudoko Snr	Tel: +256/5/263/5/(W)	Chemistry Department	t
•••••			
		•••••	
•••••			
			•••••
	• • • • • • • • • • • • • • • • • • • •		

©Mudoko Snr	Tel: +256/5/263/5/(W) C	nemistry Department	
•••••			
•••••			
•••••			•••••
•••••		•••••	•••••
•••••			
•••••		•••••	•••••

ii) Identification using sodium carbonate solution

The procedure is the same as that of addition of sodium hydroxide solution or aqueous ammonia.

Observations	Deductions
White precipitate insoluble in excess	Zn ²⁺ or Pb ²⁺ or Sn ²⁺ or Mg ²⁺ or Ba ²⁺
White precipitate insoluble in excess with effervescence of a	Al ³⁺
colourless gas that turns lime water milky	
White precipitate insoluble in excess but turns brown on	Mn ²⁺
standing	
A green or blue precipitate insoluble in excess	Cu ²⁺
A dirty green precipitate insoluble in excess	Fe ²⁺
A brown precipitate insoluble in excess with effervescence of	Fe ³⁺
a colourless gas that turns lime water milky	
Pale green precipitate insoluble in excess	Ni ²⁺
No observable change	NH ₄ ⁺
A :	

Assignment 2

Use ionic equations to illustrate the above observations.

©Mudoko Snr	Tel: +256/5/263/5/(V	N) Chemistry Departn	ient
• • • • • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
•••••			
	•••••	•••••	•••••
•••••			

CONFIRMATORY TESTS FOR CATIONS

These are tests that prove beyond doubt that indeed a particular ion is present in the given sample. The table below summarizes the confirmatory tests for cations.

Cation	Test procedure	Observations
Zn ²⁺	To the test solution, add solid ammonium chloride	White precipitate soluble in excess
	followed by 4-5 drops of disodium hyrogenphosphate	forming a colourless solution
	solution followed by dilute ammonia drop wise until	
	in excess.	
	To the test solution, add potassium ferrocyanide or	White precipitate is formed
	hexacyanoferrate(II) solution	
Pb ²⁺	To the test solution, add potassium iodide solution.	Yellow precipitate
	To the test solution, add dilute hydrochloric acid	White precipitate
	To the test solution, add dilute sulphuric acid	White precipitate
	To the test solution, add potassium chromate	Yellow precipitate soluble in
	solution followed by dilute sodium hydroxide	excess sodium hydroxide solution
	solution until is excess	
Ba ²⁺	To the test solution, add dilute sulphuric acid	White precipitate
	To the test solution, add ammonium oxalate	White precipitate soluble in dilute
	followed by dilute ethanoic acid.	acid
	To the test solution, add potassium chromate	Yellow precipitate insoluble in
	solution followed by dilute sodium hydroxide	excess sodium hydroxide solution
	solution until is excess	
	To the test solution, add potassium chromate	Yellow precipitate insoluble in
	solution followed by dilute ethanoic acid	dilute acid
Cu ²⁺	To the test solution, add dilute ammonium dropwise	Pale blue precipitate soluble in
	until in excess	excess to form a deep blue solution
	To the test solution, add 3-4 drops of potassium iodide	White precipitate in a brown
	solution	solution

	To the test solution, add potassium ferrocyanide or	A brown precipitate is formed
	hexacyanoferrate(II) solution.	
	To the test solution, add excess concentrated	A yellow solution is formed
	hydrochloric acid.	
Al ³⁺	To the test solution, add 2-3 drops of dilute nitric acid	A blue lake solution is formed
	followed by 3-4 drops of litmus solution and then	
	dilute ammonia solution drop wise until is excess.	
	To the test solution, add 2drops of litmus solution,	Purple colouration is formed
	followed by about 1cm ³ of dilute hydrochloric acid	
	and then dilute ammonia solution until the solution is	
	alkaline, then add Alizarin reagent	
Mg ²⁺	To the test solution, add solid ammonium chloride	White precipitate insoluble in
	followed by 4-5 drops of disodium hyrogenphosphate	excess ammonia
	solution followed by dilute ammonia dropwise until	
	in excess.	
Ca ²⁺	To the test solution, add ammonium oxalate followed	White precipitate insoluble in
	by dilute ethanoic acid.	dilute acid
	To the test solution, add potassium chromate solution	Yellow precipitate soluble in
	followed by dilute sodium hydroxide solution until is	excess sodium hydroxide solution
	excess	
Ni ²⁺	To the test solution, add little ammonia solution	A red or pink precipitate is formed
	followed by dimethyl glyoxime solution	
	To the test solution, add few drops of potassium	A brown precipitate is formed
	hexacyanoferrate(III) solution.	
Mn ²⁺	To the test solution, add a few drops of concentrated	A purple solution is formed
	nitric acid followed by a little sodium bismuthate and	
	warm gently	
	To the test solution, add a few drops of concentrated	A purple solution is formed
	nitric acid followed by lead(IV) oxide and warm	
	gently.	
	gently.	

	To the test solution, add a few drops of hydrogen	A dark brown ppt with rapid
	peroxide solution followed by dilute sodium	effervescence of a colourless gas
	hydroxide drop wise until in excess.	that relights a glowing splint
Fe ²⁺	To the test solution, add 3-4 drops of potassium	A dark blue precipitate is formed
	hexacyanoferrate(III) solution.	
	To the test solution, add hydrogen peroxide solution	Pale green solution turns to brown
	and warm	
	To the test solution, add concentrated nitric acid and	Green solution turns to brown
	warm	
Fe ³⁺	To the test solution, add 3-4 drops of potassium	A dark blue precipitate is formed
	hexacyanoferrate(II) solution.	
	To the test solution, add ammonium or potassium	A deep red solution is formed
	thiocyanate solution	
Cr ³⁺	To the test solution, add dilute sodium hydroxide	A green precipitate soluble in
	solution drop wise until in excess followed by	excess NaOH forming a green
	hydrogen peroxide and warm	solution and turns to yellow on
		addition of hydrogen peroxide
	To the test solution, add lead(II) nitrate or ethanoate	A yellow precipitate
	solution followed by dilute sodium hydroxide	

Making the solution "Just Acidic"

This is done by adding dilute mineral acid such as dilute nitric acid to the filtrate obtained after adding sodium hydroxide solution or ammonia solution and filtering. This differentiates amphoteric cations and non-amphoteric cations.

During addition of an acid, a precipitate is formed and when it dissolves, the addition is stopped and the solution is said to be 'just acidic'.

Explanation

During the reaction the amphoteric cation with sodium hydroxide, a precipitate is formed which dissolves in excess to form a complex solution e.g.

In little sodium hydroxide solution

$$Al^{3+}$$
 (aq) + 3OH⁻ (aq) \rightarrow Al(OH)₃ (s) (white precipitate)

In excess sodium hydroxide solution

$$Al(OH)_3$$
 (s) + OH^- (aq) $\rightarrow [Al(OH)_4]^-$ (aq) (colourless solution)

During filtration the colourless solution (tetrahydroxoaluminate(III) ions) remain in the filtrate and to make them free, an acid has to be add to the filtrate until it is just acidic. Then the aluminium ions are free in solution. The reactions which occur are;

$$[Al(OH)_4]^-(aq) + H^+(aq) \rightarrow Al(OH)_3(s) + H_2O(l)$$

$$Al(OH)_3 (s) + 3H^+ (aq) \rightarrow Al^{3+} (aq) + 3H_2O (l)$$

Washing the residue with distilled water and then dissolving in acid

This is done by pouring water on the residue through the filter paper in a funnel times. This removes any traces of the soluble cations which might be trapped in the residue. The wash residue is the dried between filter papers and carefully transferred to the test tube.

A dilute acid normally hydrochloric acid or nitric acid is then added to the residue until there is no further change. Watch what happens and the write your observations and deductions as illustrated below

Observations	Deductions
The white residue dissolves with effervescence	CO ₂ evolved
of a colourless gas that turns moist blue litmus	CO ₃ ²⁻ confirmed
paper red and lime water milky.	
The resultant solution is colourless	Non transition metal ions present

Identification of anions

The anions identified at A' level include;

Sulphate ions, SO₄²-

Carbonate ions, CO₃²-

Chloride ions, Cl

Nitrate ions, NO₃-

Hydrogencarbonate ions, HCO₃-

Iodide ions, I

Bromide ions, Br

Ethanoate ions or acetate ions, CH₃COO⁻

Oxalate ions, $C_2O_4^{2-}$

Sulphite ions (SO₃²-)

a) Action of lead(II) nitrate

Test	Observation	Deduction
To the test solution, add	White precipitate	SO ₄ ²⁻ , C ₂ O ₄ ²⁻ , CO ₃ ²⁻ , SO ₃ ²⁻
lead(II) nitrate solution		
To the test solution, add	A yellow precipitate	I ⁻
lead(II) nitrate solution		
To the test solution, add	White precipitate insoluble on	SO ₄ ² -
lead(II) nitrate solution and	warming	
warm	White precipitate soluble on	Cl ⁻
	warming and reappears on	
	cooling.	
To the test solution, add	A white precipitate soluble in	Cl ⁻ , SO ₄ ²⁻
lead(II) nitrate solution	the acid	
followed by dilute nitric acid		

To the test solution, add	A white precipitate soluble in	CO ₂ evolved
lead(II) nitrate solution	the acid with effervescence of	$C_2O_4^{2-}, CO_3^{2-}$
followed by dilute nitric acid	a colourless gas that turns	
	moist blue litmus paper red	
	and lime water milky	

b) Action of barium nitrate and dilute nitric acid

Test	Observations	Deductions
To the test solution add	A white precipitate insoluble	SO ₄ ²⁻ confirmed
barium nitrate solution	in the acid	
followed by dilute nitric acid	A white precipitate soluble in	SO ₃ ² -
	the acid	
	A white precipitate soluble in	CO ₂ evolved
	the acid with effervescence of	$C_2O_4^{2-}, CO_3^{2-}$
	a colourless gas that turns	
	moist blue litmus paper red	
	and lime water milky	
To the test solution, add dilute	White precipitate	SO ₄ ²⁻ confirmed
nitric acid followed by barium		
nitrate solution		

Note: A combination of barium chloride and dilute hydrochloric acid gives similar observations as noted in the table above.

c) Action of silver nitrate and dilute nitric acid

Test	Observation	Deductions
To the test solution, add dilute	White precipitate	Cl ⁻ confirmed
nitric acid followed by few		I
drops of silver nitrate solution	No observable change	SO ₄ ² -

To the test solution, add few	White precipitate insoluble in	Cl⁻ confirmed
drops of silver nitrate	acid	
followed by dilute nitric acid	A pale yellow precipitate	I ⁻
	A white precipitate soluble in	CO ₂ evolved
	the acid with effervescence of	$C_2O_4^{2-}, CO_3^{2-}$
	a colourless gas that turns	
	moist blue litmus paper red	
	and lime water milky	

d) Action of silver nitrate and aqueous ammonia

Tests	Observations	Deductions
To the test solution, add few	A white precipitate soluble in	Cl ⁻ confirmed
drops of silver nitrate	excess ammonia solution	
followed by ammonia	forming a colourless solution	
solution dropwise until in	Pale yellow precipitate	I ⁻
excess	insoluble in excess ammonia	
	solution	
	No observable change	SO ₄ ² -
	White precipitate insoluble in	SO ₃ ² -
	excess ammonia	
	White precipitate soluble in	$C_2O_4^{2-}, CO_3^{2-}$
	excess ammonia	

Confirmatory tests for anions

Anion	Test(s)	Observation(s)	
CO ₃ ² -	To the solid sample, add dilute nitric	Effervescence of a colourless gas that	
	or hydrochloric acid	turns moist blue litmus red and forms a	
		white precipitate with calcium	
		hydroxide solution	

	To the test solution, add magnesium	White precipitate
	sulphate or chloride solution	
HCO ₃ -	To the test solution, add magnesium	No observable change
	sulphate or chloride solution	
$C_2O_4^{2-}$	To the test solution, add acidified	Purple solution turns to colourless
	potassium permanganate and heat	
	To the test solution, add iodine	Brown solution turns to colourless
	solution and heat	
SO ₄ ²⁻	To the test solution, add barium nitrate	White precipitate insoluble in acid
	solution followed by dilute nitric acid	
	To the test solution, add barium	White precipitate insoluble in acid
	chloride solution followed by dilute	
	hydrochloric acid	
SO ₃ ²⁻	To the test solution, add acidified	Purple solution turns to colourless
	potassium permanganate	
	To the test solution, add iodine	Brown solution turns to colourless
	solution	
Cl ⁻	To the test solution, add lead(II)	White precipitate soluble on warming
	nitrate solution and warm	and reappears on cooling
	To the test solution, add few drops of	White precipitate soluble in excess
	silver nitrate solution followed by	ammonia solution to form a colourless
	aqueous ammonia	solution
	To the test solution, add few drops of	White precipitate insoluble in acid
	silver nitrate solution followed by	
	dilute nitric acid	
CH ₃ COO ⁻	To the test solution, add ethanol	A sweet fruity smell
	followed by 3-4 drops of concentrated	
	sulphuric acid and warm. Pour the	
	mixture into cold water in a beaker	

	To the test solution, add neutral	A red colouration/solution is formed
	iron(III) chloride solution	
NO ₃ -	To the test solution, add freshly	A brown ring is formed
	prepared iron(II) sulphate solution.	
	Then hold the test in a slanting	
	position and add concentrated	
	sulphuric acid down the sides of the	
	test tube	
	Heat the solid sample in a dry hard test	-Brown fumes of a gas that turns moist
	tube gently then strong	blue litmus paper red
		-Another colourless gas that relights a
		glowing splint and neutral to litmus
		paper
Br ⁻	To the test solution, add little	An orange solution in the lower organic
	bleaching powder (or 1 cm ³ of sodium	layer
	hypochlorite solution), followed	
	by1cm ³ of dilute and then 1cm ³ of	
	chloroform (or 1cm ³ of	
	tetrachloromethane) and shake gently.	
I-	To the test solution, add 3-5 drops of	Colourless solution turns to brown and
	concentrated nitric acid and warm.	then to a blue-black solution
	Cool and the add starch solution	
	To the test solution, add little	A purple solution in the organic or lower
	bleaching powder (or 1 cm ³ of sodium	layer
	hypochlorite solution), followed	
	by1cm ³ of dilute and then 1cm ³ of	
	chloroform (or 1cm ³ of	
	tetrachloromethane) and shake gently	
	To the test solution, add 5-6 drops of	Colourless solution turns to brown then
	concentrated sulphuric acid and	to colourless.

warm. To the mixture, add sodium	
thiosulphate solution	

Rules followed while doing an inorganic qualitative analysis examination

- ✓ Observations and deductions should be written precisely
- ✓ Deductions should relate to observations
- \checkmark In deduction column, a wrong answer cancels out a correct one
- ✓ The use of words inappropriately will lead to loss of marks and therefore should be avoid
- ✓ Technical words such as precipitate, effervescence, ion should be correctly spelt
- ✓ In case of a confirmatory test, the word confirmed should accompany the ion
- ✓ The symbol or formula of ion should be correctly written. Refer to our notes, text books
 and discussions for details
- ✓ Whenever asked to carry out a test of your own choice, the test MUST be written and corresponding observations. The order of reagents is very paramount and once altered, wrong observations are got.

- T- T	- The state of the	of the following.
Ion or compound	Correct presentation of symbol or formula	Wrong presentation of symbol or formula
Zinc ion	7 2+	7 2t -7 1024 - 11
Lead(II) ion	DI 2+	2n, Zn, Zn, Zn, Zn, Zn, Zn, Zn, Zn, Zn, Z
Aluminium ion	Λ /3+	Pb, Pb, Pb, Pb, Pb+2
Calcium ion	(2+	Al, Al, Al, Al, Al, Al,
Magnesium ion	NA 2+	$C_{a}^{2+}, C_{a}^{2+}, C_{a}^{2+}, C_{a}^{+2}$
Barium ion	Mg	Mg2+, mg2+, H2+ M2+ M2+
Copper(II) ion	Bat	Ba+, Ba+, Ba+ B+2
1100 1100 100 100	Cut	Cu. Cl ²⁺ Cu ²⁺ Cu ²⁺ Cu ²
lron(II) ion	Fe ²⁺	Fot = 2+ F2+ F2+ C2+ C2+
Nickel(II) ion	Ni2+	Ni2+ N 1:2+ X 1:2+ N1:+2
Ammonium ion	NH.*	NH+ NH+ NH+
Carbonate ion	()2-	() 14, X 14, N 3
Sulphate ion	502-	C_{3} , C_{3} , C_{3} , C_{3} , C_{3}
Chloride ion	C1-	504, 504, 504, 504
odide ion	T	C1, C1, C1, C1
arbon dioxide	<u></u>	1, 1, 1
inc oxide	70	Co_2 , CO_2 , CO_2 , CO_2
agnesium oxide	ZnU	Ino, ZNO, 2nO, ZnO
	MgO	Mgo, M90, 400 MgO
ad(II) oxide	PLM	Pbo, Pbo. Pbo. Ph2+

Sample question

You are provided with substance K which contains two cations and two anions. You are required to carry out the following tests on K to identify the cations and anions in K. Identify any gas(es) evolved. Record your observations and deductions in the table below.

Tests	Observations	Deductions
a) Heat a spatula endful of K	-White crystalline solid	Non-transition metal ions
in a dry test tube strongly	-A colourless condensate which turns	Water of crystallization
until there is no further	white anhydrous copper(II) sulphate to	Hydrated salt
change.	blue	
	-A colourless vapour with a sweet fruity	Propanone vapour evolved
	smell and forms a yellow precipitate	CH₃COO⁻
	with Brady's reagent	
	-A colorless gas that turns lime water	CO ₂ evolved
	milky and moist blue litmus paper red	$C_2O_4^{2-}$ or CO_3^{2-}
	-Brown fumes of a gas which turns	NO ₂ evolved
	moist blue litmus paper red	NO ₃ -
	-A brown residue when hot and yellow	PbO
	on cooling	Pb^{2+}
b) To a spatula endful of K ,	- White fumes with a vinegar smell	Ethanoic acid fumes
add 3-5 drops of	and turns moist blue litmus paper	evolved
concentrated sulphuric acid	red.	∴ CH ₃ COO ⁻
and warm gently.	- Brown fumes which turn moist blue	NO ₂ (g) evolved
	litmus paper red.	∴ NO ₃
c) To two spatula endfuls of	- White crystalline solid dissolves to	Ba ²⁺ , Ca ²⁺ or Mg ²⁺
K, add distilled water and	form a colourless solution	
shake to dissolve. To the	- White precipitate insoluble in	Pb^{2+} or Al^{3+} or Mg^{2+}
resultant solution, add dilute	excess.	
ammonia solution drop wise	- Colourless filtrate.	Zn^{2+} or Ca^{2+}
until in excess and filter.	- White solid residue.	Zn^{2+} or Ca^{2+} Pb ²⁺ or Al ³⁺

Keep both filtrate and		
residue.		
d) To the filtrate, add dilute	White precipitate which dissolves in	Zn ²⁺
nitric acid drop wise until the	acid to form a colourless solution	
solution is just acidic.		
e) Divide the acidified filtrate	White precipitate soluble in excess to	Zn ²⁺
into six portions.	form a colourless solution.	
i) To the first portion, add		
dilute sodium hydroxide		
solution drop wise until in		
excess.		
ii) To the second portion, add	White precipitate insoluble in excess	Zn ²⁺
sodium carbonate solution,		
drop wise until in excess.		
iii) To the third portion, add	White precipitate soluble in excess to	Zn^{2+}
dilute ammonia solution,	form a colourless solution.	
drop wise until in excess.		
iv) To the fourth portion,	White precipitate soluble in excess to	Zn ²⁺ confirmed
carry out a test of your own	form a colourless solution.	
choice to confirm one of the		
cations in K.		
Test		
Add solid ammonium		
chloride followed by 4 drops		
of disodium hydrogen		
phosphate solution and then		
aqueous ammonia drop wise		
until in excess.		
v) To the fifth portion, add	A colourless sweety fruity smelling	Ester formed
ethanol followed by 3-5	compound.	∴ CH ₃ COO ⁻ confirmed

drops of concentrated		
sulphuric acid and warm.		
Pour the mixture into a		
beaker of cold water.		
vi) To the sixth portion, add	A colourless gas which turns moist red	NH ₃ (g) evolved.
zinc metal powder followed	litmus paper blue and forms dense white	∴ NO ₃ confirmed
by excess sodium hydroxide	fumes with hydrogen chloride gas.	
solution and warm.		
f) Wash the residue obtained	White solid residue dissolves to form a	Pb ²⁺ or Al ³⁺ or Mg ²⁺
in (c) with water and dissolve	colourless solution	
it in dilute nitric acid. Divide		
the resultant solution into		
four portions.		
i) To the first part, add dilute	White precipitate soluble in excess to	Pb ²⁺ or Al ³⁺
sodium hydroxide solution	form a colourless solution.	
drop wise until in excess.		
ii) To the second portion, add	White precipitate insoluble in excess	Pb ²⁺ or Al ³⁺
dilute ammonia solution drop		
wise until in excess.		
iii) To the third portion, add	White precipitate	Pb ²⁺
dilute sulphuric acid.		
iv) To the fourth portion, add	Yellow precipitate soluble in excess to	Pb ²⁺
potassium chromate solution	form a yellow solution	
followed by sodium		
hydroxide solution drop wise		
until in excess.		

- (g) (i) The cations in \mathbf{K} are Zn^{2+} and Pb^{2+}
 - (ii) The anions in \mathbf{K} are CH₃COO⁻ and NO⁻₃

BRAIN CHECK.

1. You are provided with substance Q which contains two cations and two anions. You are required to carry out the following tests on Q to identify the cations and anions present. Identify any gas(es) evolved. Record your observations and deductions in the table below.

$Q [FeSO_4.7H_2O + ZnCO_3]$

Tests	Observations	Deductions
a) Heat a spatula endful of Q in a		
dry test tube strongly until there		
is no further change.		
b) To two spatula endfuls of Q,		
add distilled water, shake and		
filter.		
Keep both filtrate and residue.		
c) Divide the filtrate into five		
portions.		
i) To the first portion, add dilute		
sodium hydroxide solution drop		
wise until in excess.		

ii) To the second portion, add	
ammonia solution, drop wise	
until in excess.	
iii) To the third portion, add 3-4	
drops of concentrated sulphuric	
acid followed by 2-3 drops of	
potassium thiocyanate.	
iv) To the fourth portion, add	
lead(II) nitrate solution and heat.	
Allow it to cool	
v) Use the fifth portion to carry	
out a test of your own choice to	
identify one of the anions in Q.	
Test	
c) Wash the residue with water	
and dissolve it in dilute	
hydrochloric acid.	
Divide the resultant solution into	
three portions.	
i) To the first part, add dilute	
sodium hydroxide solution drop	
wise until in excess.	

ii) To the second portion, add	
dilute ammonia solution drop	
wise until in excess.	
iii) Use the third portion to carry	
out a test of your own choice to	
confirm one of the cations in Q	
Test	

ď) Id	entify	, the
u	, iu	CHUI	unc

:\) Cations in O			
1)) Cations in O	 	 	

- ii) Anions in Q.....
 - 3. You are provided with substance W which contains two cations and two anions. You are required to carry out the following tests on W to identify the cations and anions present. Identify any gas(es) evolved. Record your observations and deductions in the table below.

W $[(CH_3COO)_2Pb + ZnCl_2.6 H_2O]$

Tests	Observations	Deductions
a) Heat a spatula endful of W in		
a dry test tube strongly until there		
is no further change.		

b) To two spatula endfuls of W,	
add 2-3 drops of concentrated	
sulphuric acid and warm.	
c) To two spatula endfuls of W,	
add dilute nitric acid until there is	
no further change	
Add sodium hydroxide solution	
drop wise until in excess. Filter	
and keep both filtrate and	
residue.	
d) to the filtrate, add dilute nitric	
acid until it is just acidic	
Divide the resultant solution into	
four parts.	
i) To the first part of the filtrate,	
add dilute sodium hydroxide	
solution drop wise until in	
excess.	
ii) To the second part of the	
filtrate, add ammonia solution,	
drop wise until in excess.	
iii) To the third part of the acidic	
solution, add dilute sulphuric	
acid	
iv) Use the fourth portion to carry	
out a test of your own choice to	
confirm one of the cations in W.	
Test	
	<u> </u>

1	T
e) To 2 spatula endfuls of W, add	
about 5cm3 of water, shake and	
filter. Divide the filtrate into five	
parts	
i) To the first part, add dilute	Ī
sodium hydroxide solution drop	
wise until in excess.	
ii) To the second portion, add	l
dilute ammonia solution drop	
wise until in excess.	
iii) Use the third portion to carry	
out a test of your own choice to	
confirm one of the cations in W	
Test	
- 400	
iv) to the fourth ment add land/II)	ļ
iv) to the fourth part, add lead(II)	
nitrate solution and heat	
v) Use the fifth part to carry out a	
test of your own choice to	
confirm one of the anions in W	
Test	
	1

d) Identify the	
i) Cations in W	
ii) Anions in W	

4. You are provided with substance X which contains two cations and two anions. You are required to carry out the following tests on X to identify the cations and anions present. Identify any gas(es) evolved. Record your observations and deductions in the table below.

$[NiCl_2.6H_2O + ZnCO_3]$

TESTS	OBSERVATIONS	DEDUCTIONS
a) Heat a spatula endful of X in a		
dry test tube first gently, then		
strongly until there is no further		
change.		
Allow it to cool		
b) To two spatula endfuls of X,		
add about 10cm ³ of water. Shake		
well and filter		
Keep both the filtrate and residue		
divide the filtrate into four parts		
i) To the first part of the filtrate,		
add dilute sodium hydroxide		
solution drop wise until in		
excess.		
ii) To the second part of the		
filtrate, add ammonia solution,		

drop wise until in excess. Add 2-	
3 drops of dimethyl glyoxime to	
the mixture	
iii) To the third part of solution,	
add dilute nitric acid followed by	
a few drops of lead(II) nitrate	
solution and warm	
iv) Use the fourth portion to carry	
out a test of your own choice to	
confirm one of the anions in X.	
Test	
c) Dissolve the residue in 5cm ³ of	
dilute nitric acid and divide the	
resultant solution into two parts;	
i) To the first part, add dilute	
sodium hydroxide solution drop	
wise until in excess.	
ii) To the second part, add solid	
ammonium chloride followed by	
2-3 drops of disodium hydrogen	
phosphate. Add ammonia	
solution to the mixture drop wise	
until in excess	
d) Identify the;	

i) Cations in X.....

$@Mudoko\ Snr$	Tel: +256757263757(W) Chemistry Department
ii) Anions in X	

4. You are provided with substance T which contains two cations and two anions. You are required to carry out the following tests on T to identify the cations and anions present. Identify any gas(es) evolved. Record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
a) Heat a spatula endful of T in a		
dry test tube first gently, then		
strongly until there is no further		
change.		
b) To two spatula endfuls of T in		
a boiling tube, add dilute nitric		
acid drop wise there is no.		
To the resultant solution, add		
dilute sodium hydroxide drop		
wise until in excess. Shake and		
filter.		
Keep both the filtrate and residue		

	1
c) To the filtrate, add dilute nitric	
acid little at a time until the	
solution is just acidic. Divide the	
filtrate into four parts	
i) To the first part of the acidified	
filtrate, add 2cm3 of ethanol	
followed by 2-3 drops of	
concentrated sulphuric acid and	
warm the mixture.	
ii) To the second part of the	
filtrate, add dilute sodium	
hydroxide solution drop wise	
until in excess.	
iii) To the third part of the	
acidified filtrate, add dilute	
ammonia solution drop wise until	
in excess.	
iv) Use the fourth portion to carry	
out a test of your own choice to	
confirm one of the cations in T.	
Test	
1	<u> </u>

d) Dissolve the residue in (b)	
above in dilute hydrochloric acid	
and divide the resultant solution	
into four parts parts	
i) To the first part of the resultant	
solution, add dilute sodium	
hydroxide solution drop wise	
until in excess.	
ii) To the second part of the	
resultant solution, add dilute	
ammonia solution drop wise until	
in excess	
iv) To the second part of the	
resultant solution, add potassium	
iodide solution	
iv) Use the fourth part of the	
resultant solution to carry out a	
test of your own choice to	
confirm the second cation in T.	
Test	
J) Identification	
d) Identify the;	

i) Cations in T.....

ii) Anions in T		
5. You are provided with substance	e H which contains two cations and	two anions. You are
required to determine the ions in	H.	
Carry out the following tests and	l identify any gas(es) evolved. Reco	rd your observations
and deductions in table III below	·.	
Tests	Observations	Deductions
a) Heat two spatula endfuls of H in a		
dry test tube, first gently then strongly		
until there is no further change. Allow		
it to cool		

i) To the first part of the solution, add sodium hydroxide solution dropwise until in excess	
ii) To the second part of the solution, add aqueous ammonia drop wise until in excess	
iii) To the third part of the solution, add dilute nitric acid followed by few drops of lead(II) nitrate solution and warm	
iv) Use the fourth part of the solution to carry out a test of your own choice to confirm one of the anions in H Test	
c) Dissolve the residue in about 5cm ³ of dilute nitric acid. Divide the resultant solution into two equal parts.	
i) To the first part of the solution, add sodium hydroxide solution drop wise until in excess	

ii) To the second part of the solution, add aqueous ammonia drop wise until in excess.	
iii) To the third part of the solution, add solid ammonium chloride followed by 3 or 4 drops of disodium hydrogen phosphate solution. Add ammonia solution to the mixture drop wise until in excess.	

`	T 1		. 1
a)	Idei	ntify	the
α,	100		CIIC

1) Cations in H	and
-----------------	-----

6. You are provided with substance **X**, which contains **two** cations and **two** anions. You are required to carry out the following tests on **X** to identify the cations and anions in **X**. Identify any gases evolved.

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat a spatula endful of X strongly		
in a dry test tube.		
(b) To ½ spatula endful of X add 2-3		
drops of concentrated sulphuric acid.		
Heat the mixture.		

ii) Anions in H and

(iii) Use the third portion to carry out		
a test of your own choice to confirm		
one of the cations in X .		
TEST		
(e) Wash the residue with sodium		
hydroxide solution and then with		
water and dissolve it in dilute nitric		
acid.		
Divide the resultant solution into		
three parts.		
(i) To the first part of the resultant		
solution add sodium hydroxide drop-		
wise until in excess.		
(ii) To the second part of the resultant		
solution add ammonia solution drop-		
wise until in excess.		
(iii) Use the third part of the of the		
resultant solution to carry out a test of		
your choice to confirm the remaining		
cations in X .		
TEST:		
(e) Identify the		
(i) Cations in	X and	
(ii) Anions in X and		

PART 2: ORGANIC QUALITATIVE ANALYSIS

Introduction

Simple organic compounds are classified according to their functional groups. These functional groups are the reaction sites where specific reactions particular to a certain group of compounds take place.

Objectives/Aims of analyzing organic compounds

- ✓ Categorizing organic compounds as either aliphatic or aromatic
- ✓ Determining **carbon to hydrogen ratio** or **carbon content** in organic compounds
- ✓ Identification of **functional groups** in organic compounds e.g. hydroxyl group, carbonyl group, carboxyl group, amino group etc.
- ✓ Categorizing organic compounds as either acidic, basic or neutral.
- ✓ Categorizing organic compounds as either **polar or non-polar**.
- ✓ Differentiating between classes of organic compounds that is **primary**, **secondary and tertiary**
- ✓ Categorizing organic compounds as either **saturated or unsaturated**.

Note: It's from the above objectives that should derive the required comment on the nature of the organic compound given.

Nature of organic question

You are provided with an **organic compound M**. You are required to carry out the following tests on M. Record your **observations** and **deductions** in the table below and describe the /comment on the **nature of M**.

Organic questions are usually organized in a table format (as below) requiring candidates to write observations and deductions after performing the given tests. However, examiners can ask learners to carry out tests of their own choice to identify the organic compound given.

Test	Observation	Deduction

The objectives are above are achieved by carrying out preliminary and confirmatory tests on the given organic substance

a) Preliminary tests

1. Physical appearance

This gives an over view of the nature of the organic compound

Observation	Deduction
A colourless liquid	Lower aliphatic compound e.g. alcohol,
	aldehydes, ketones, carboxylic acids, esters
Solid compound	Aromatic compound or higher aliphatic
	compound e.g. salts of carboxylic acids,
	phenol, dicarboxylic acids and
	carbohydrates.

2. The flame test

Unlike inorganic compounds, flame test is vital in analyzing organic compounds.

This is important in

- Categorizing organic compounds as either **aliphatic or aromatic**.
- Determining carbon to hydrogen ratio (carbon content) in organic compounds
- Categorizing organic compounds as either saturated or unsaturated.

Test	Observation	Deduction
Burn a small amount	Burns with a yellow non-	Aliphatic, saturated compound with
of the organic	sooty flame	a low carbon content
compound on a	Burns with a yellow sooty	Aromatic or unsaturated aliphatic
spatula end or	flame	compound with a high carbon content
crucible	Does not burn	Alkyl halide or nitrogen containing
		compound or salt of carboxylic acid.

3. Smell. The smell of the compound can be a guide but not a sure test

4. Solubility in Water

The solubility of organic compounds decreases with increasing molecular mass of the compounds in a given series.

Therefore, if the substance readily dissolves in water, then the sample is likely to be a low molecular compound.

Aromatic compounds are less soluble compared to their corresponding aliphatic compounds.

If the organic compound is in liquid state the word 'miscible' or 'immiscible' is used and if in solid state the word "soluble" or "dissolve" is commonly used.

Test	Observation	Deduction
To 1cm ³ of organic	Miscible with water	Polar aliphatic compound
compound, add 2cm ³ of	forming a colourless	with low carbon content
water	solution	e.g. alcohol, carboxylic
		acid carbonyl or ester
To 1cm ³ of organic	Immiscible with water	Non-polar aliphatic
compound, add 2cm ³ of		compound
water		
Shake a spatula endful of	Sparingly soluble in cold	Polar aromatic compound;
organic compound with	water but dissolves on	Phenol
about 4cm ³ of water and	warming to form a	
warm	colourless solution	
Shake a spatula endful of	Insoluble in water	Polar aromatic compound
organic compound with		
about 4cm ³ of water		

Note:

- Usually the solution formed with water is tested with litmus (blue and red) or universal indicator to ascertain whether it is neutral, basic or acidic.
- Phenol and aromatic carboxylic acids do not easily dissolve in cold water, but soluble in hot water, and their solutions turn blue litmus paper red.

5. Use of indicator

Litmus paper	Litmus solution	Universal	indicator	Deduction
		solution		

Has no effect on both	Has no effect on litmus	Solution remains green	Neutral compound;
blue and red litmus	solution		Alcohols or carbonyl or
paper			ester present
Blue litmus paper turns	Blue litmus solution	Solutions turn to red or	Acidic compound;
to red or pink	turns to red	pink or orange	Carboxylic acid or
			phenol present
Red litmus paper turns	Red litmus solution	Solution turns blue	Basic compound
blue	turns blue		Amines or salt of
			carboxylic acid present

6. Action of dilute sodium hydroxide

Sodium hydroxide solution is used to test for the presence of carboxylic acids and phenols in a neutralization reaction

Tests	Observations	Deductions
To 1cm ³ of the organic	Miscible to form a	Neutralization reaction
compound, add 4cm ³ of	colourless solution with no	Aliphatic carboxylic acid or
sodium hydroxide solution	evolution of a gas	phenol present
To a spatula endful of the	Dissolves to form a	Neutralization reaction
organic compound, add	colourless solution with no	Aromatic carboxylic acid or
4cm ³ of sodium hydroxide	evolution of a gas	phenol present
solution		
To 1cm ³ of the organic	Miscible to form a	Ester hydrolysis to alcohol
compound, add 4cm ³ of	colourless solution with	and a sodium salt of
sodium hydroxide solution	evolution of a gas and on	carboxylic acid
and boil or heat	boiling or heating the sweet	Ester present
	fruity smell is lost	
To 1cm ³ of the organic	Miscible to form a	Aliphatic amine present
compound, add 4cm ³ of	colourless solution with	
sodium hydroxide solution		

	evolution of a gas that turns	
	moist red litmus paper blue	
To the organic compound,	Solid insoluble in sodium	Aromatic amine
add sodium hydroxide	hydroxide solution	
solution		

7. Use of bromine water

Test	Observation	Deduction
Add bromine water to	Brown water turns from	Saturated compound present;
the unknown organic	brown to colourless	(Phenol or aniline present)
compound	Brown colour of bromine	Unsaturated compound
	water persists	present;
		(Phenol or aniline absent)
	White precipitate	Phenol present

b) Confirmatory tests

Test	Observation	Deduction
Add a few drops of Brady's reagent	Yellow precipitate	Carbonyl
or 2-3 drops of		Compound;
2,4-dinitrophenylhydrazine		(ketone or aldehyde)
Note: Conc. HCl can be added		
followed by warming	No observable change	Carbonyl compound absent
Add acidified potassium dichromate	Orange solution turns to	Primary or secondary alcohol,
solution and heat	green	Aldehyde present
	No observable change	Tertiary alcohol
		or ketone present
Add acidified potassium	Purple solution turns to	Primary or secondary alcohol,
permanganate solution and heat	colourless	Aldehyde present

	No observable change	Tertiary alcohol or ketone
		present
Add Tollen's reagent (silver nitrate	Silver mirror is formed	Ketone absent;
in ammonia solution or ammoniacal		Aldehyde confirmed
silver nitrate)		Or HCOOH present
	No observable change	Aldehyde absent;
		Ketone confirmed
Add Fehling's solution (copper(II)	Red precipitate	Ketone absent;
sulphate solution		Aldehyde confirmed
	No observable change	Aldehyde absent;
		Ketone confirmed
		HCOOH present
Add Lucas' reagent (anhydrous zinc	No observable change	Primary (1°) alcohol is
chloride and concentrated		present
hydrochloric acid). Shake well and	Cloudiness formed	Secondary (2°) alcohol
allow to stand	within 5-10 minutes	
	Immediate cloudiness is	Tertiary (3°) alcohol present
	formed	
Add sodium carbonate or sodium	Effervescence of a	Carbon dioxide gas evolved;
hydrogencarbonate solution or solid	colourless gas that turns	Carboxylic acid present
	lime water milky and	
	moist blue litmus paper	
	red.	
Add 1cm ³ of ethanoic acid followed	Colourless sweet fruity	Esterification reaction
by a few drops of concentrated	smelling compound	Ester formed
sulphuric acid and boil for 2		Alcohol present
minutes. Pour this mixture in a small		
beaker of cold water		
	Purple/Violet	Phenol confirmed
	colouration	

Add neutral Iron(III) chloride	No observable change	Phenol absent
solution.		
Add 2 drops of Iron(III) chloride	A reddish brown or	Salt of carboxylic acid present
solution followed by heating	brown precipitate	
Add sodium hydrogen sulphate	White precipitate	Carbonyl compound present
solution		
Add two spatula endfuls of soda lime	A colourless gas that	Carbon dioxide gas evolved
	turns lime water milky	Carboxylic acid
	and moist blue litmus	
	paper red	
Add a little PCl ₅ or PCl ₃ solution.	Mist fumes which form	Compound with –OH group
(Read more in theory here for	dense white fumes with	Phenol or alcohol or
observations with SOCl ₂ solution in	concentrated ammonia	carboxylic acid
pyridine)	solution	
Add excess iodine solution followed	A yellow precipitate	Alcohol, carbonyl
sodium hydroxide solution		compounds, carboxylic acid;
dropwise until the solution is pale		with a methyl group (-CH ₃)
yellow or brown. Warm gently and		directly attached to the carbon
cool under running tap water		atom with the functional
		group present. CHI ₃ formed
	No observable change	Alcohol, carbonyl
		compounds, carboxylic acid;
		with a methyl group (-CH ₃)
		directly attached to the carbon
		atom with the functional
		group absent
Add sodium metal	Effervescence of a	Hydrogen gas produced
	colourless gas that burns	Phenol, alcohol or carboxylic
	with a pop sound	acid present

Add concentrated hydrochloric acid;	Effervescence of a	Primary aliphatic amine
cool the mixture and then add sodium	colourless gas neutral to	
nitrite solution dropwise and keep the	litmus paper	
solution mixture in an ice- bath for 5-	A yellow oily liquid	Secondary aliphatic amine
10 minutes.	No observable change	Tertiary aliphatic amine
	No observable change	Primary aromatic amine
	but on warming	
	effervescence of a	
	colourless gas neutral to	
	litmus paper	
Add sodium hydroxide solution and	White precipitate is	RCH ₂ -Cl present
heat followed by silver nitrate	formed	
solution followed by dilute nitrate	Pale yellow precipitate	RCH ₂ -Br present
acid		
	Yellow precipitate is	RCH ₂ -I present
	formed	

Sample questions

1. You are provided with an organic substance Y. Carry out the following tests on Y and record your observations and deductions in the table below.

Tests	Observations	Deductions
a) Burn a little of Y on a spatula.	Colourless liquid burns with a	Saturated aliphatic
	yellow non- sooty flame	compound; alcohol or
		carbonyl or carboxylic acid.
b) Add 1cm ³ of Y to 1cm ³ of	Miscible with water forming a	Polar aliphatic compound of
water in a test tube and shake.	colourless solution;	lower molecular.
Test the mixture with litmus.	Resultant solution has no effect	Neutral compound;
Divide the resultant solution	on litmus	Alcohol or carbonyl
into three parts.		compound.

i)	To the first part, add 2-3 drops	No observable change	Carboxylic acid absent
	of sodium carbonate solution		
ii)	To the second part, add 2cm ³	No observable change	Carbonyl compound absent;
	of Brady's reagent		alcohol present.
iii)	To the third part, add 2cm ³ of	Yellow precipitate	CHI ₃ formed
	iodine solution followed by		Alcohol with a methyl group
	sodium hydroxide solution		directly attached to the carbon
	dropwise until the colour of		atom with the functional
	iodine is discharged.		group present.
c)	Add 2cm ³ of acidified	The purple solution turns to	Primary or secondary alcohol
	potassium permanganate	colourless	oxidised
	solution to 3cm^3 of \mathbf{Y} in a		
	boiling tube heat the mixture.		
	Divide the solution into two		
	parts		
i)	To the first part, add 3	No observable change	Carbonyl compound absent
	drops of Brady's reagent		Primary alcohol present
ii)	To the second part, add	Effervescence of a colourless gas	Carbon dioxide evolved
	sodium carbonate solution	that turns lime water milky and	Carboxylic acid from
		moist blue litmus paper red	oxidation of primary alcohol

d) Deduce the nature of **Y**.

Y is a polar aliphatic saturated primary alcohol with a methyl group directly attached to the carbon atom with the functional group.

2. You are provided with solid **T**. you are required to carry out the following tests to determine the nature of **T**

Tests	Observations	Deductions
a) Burn a little of T on a spatula	T burns with a yellow sooty	Aromatic compound
end	flame	

b) Add sodium hydroxide solution	T dissolves forming a	Phenol or carboxylic acid
to a little of T in a test and shake	colourless solution	
well		
c) To a little of T in a test tube, add	T is sparing soluble in water. T	Polar organic compound of
about 5cm3 of water and heat.	dissolves on heating to form a	high molecular mass
Test the mixture with litmus	colourless solution	
paper. Divide the mixture into 5	Solution turns blue litmus paper	Acidic compound;
parts	to red	carboxylic acid or phenol
		present
i) To the first part add sodium	Effervescence of a colourless	Carbon dioxide evolved
carbonate solution	gas that turns lime water milky	Carboxylic acid
	and moist blue litmus paper	
ii) To the second part, add neutral	Purple or violet solution is	Phenol present
iron(III) chloride solution	formed	
iii) To the third part, add Brady's	No observable change	Carbonyl compound absent
reagent		
iv) To the fourth part add sodium	Colourless sweet fruity	Esterification reaction
hydroxide solution followed by few	smelling compound	Ester formed
drops of concentrated sulphuric acid		Phenol present
followed by ethanoic acid		
v) To the fifth part, add equal volume	Colourless sweet fruity	Ester formed
of ethanol followed by three drops of	smelling compound	T is Carboxylic acid
concentrated sulphuric acid and warm.		

d) Comment on the nature of T

T is an aromatic carboxylic acid with a hydroxyl group attached to the benzene ring

Practical Exercises

1. You are provided with an organic compound N. carry out the following tests on N to identify its nature

Tests	Observations	Deductions
a) Burn a small amount of N on a		
spatula end		
b) To 1cm ³ of N. add equal volume of		
sodium hydroxide solution		
c) Shake 2cm ³ of N with about 2cm ³ of		
water. Test the resultant solution with		
litmus paper.		
Divide the resultant solution into three		
parts		
i) To the first part, add 2-3 drops of		
neutral iron(III) chloride solution and		
heat		
ii) To the second part, add little sodium		
carbonate powder		
iii) To the third part, add acidified		
potassium dichromate solution and		
warm		
d) To 1cm ³ of N, add ammoniacal		
silver nitrate solution and warm; then		
allow the mixture to stand		
e) State the identity of N		

3. You are provided with an organic compound R. carry out the following tests on R to identify its nature. Record your observations and deductions in the table below

Tests	Observations	Deductions
a) Burn a spatula endful of R on a		
spatula end		
b) Two spatula endfuls of R in a clean		
test tube, add about 5cm ³ of distilled		
water. Shake vigorously and warm.		
Test the solution with litmus paper.		
Divide the result solution in 6 portions		
i) To the first portion, add few drops of		
sodium hydroxide solution		
ii) To the second portion add 1cm ³ of		
Brady's reagent		
iii) To the third portion, add 2-3 drops		
of neutral iron(III) chloride solution		
iv) To the fourth portion, add 2cm ³ of		
ethanol followed by 3 drops of		
concentrated sulphuric and warm		
(v) To the fifth portion, add 1cm ³ of		
sodium carbonate solution		
(vi) To the sixth portion, add excess		
soda lime and heat the mixture, place a		
burning splint on the mouth of the test		

e) Deduce the nature of R

©Mudoko Snr	Tel: +256757263757(W) Chemistry Department

3. You are provided with an organic compound Q. carry out the following tests on Q to identify nature.

Tests	Observations	Deductions
a) Burn a spatula endful of Q on a		
spatula end		
b) Shake 1cm ³ of Q with about 5cm ³		
of water.		
Test the resultant solution with litmus		
paper. Divide it into 2 parts		
i) To the first portion, add 2-3 drops		
of neutral iron(III) chloride solution		
ii) To the second portion, add		
acidified potassium permanganate		
and heat.		
c) To about 1cm ³ of Q, add 4-5 drops		
of 2,4-dinitrophenylhydrazine		
d) To about 1cm ³ of Q, add 1cm ³ of		
methanol and shake well. To the		
resultant solution, add 4cm ³ of iodine		
solution followed by sodium		
hydroxide drop wise until the solution		
turns pale yellow. Warm the mixture		
and allow it to cool		

e) To 1cm3 of Q, add equal volume of		
Fehling's solution and heat the		
mixture		
f) From your results above, comment on	the nature of Q.	
4. You are provided with substance Y when the subst	nich is an organic compound. C	arry out the following tests
to identify its nature		
Tests	Observations	Deductions
a) Burn a spatula endful of Y on a		
spatula end		

Tests	Observations	Deductions
a) Burn a spatula endful of Y on a		
spatula end		
b) Shake two spatula endfuls of Y		
with about 6cm3 of water.		
Test the resultant solution with litmus		
paper.		
Divide the resultant solution into four		
parts		
i) To the first portion, add sodium		
hydroxide solution		
ii) To the second portion, add little		
sodium hydrogencarbonate solution		
iii) To the third portion, add 1cm ³ of		
bromine water		

iv) To the fourth portion, add neutral			
iron(III) chloride solution drop wise			
as you shake.			
c) Comment on the nature of Y			
7 T			
5. You are provided with substance K wi	hich is an organic compound. C	arry out the following tests	
on K to identify its functional group.			
Tests	Observations	Deductions	
a) Burn a spatula endful of K on a			
spatula end			

Tests	Observations	Deductions
a) Burn a spatula endful of K on a		
spatula end		
b) Shake half spatula endful of K with		
about 6cm3 of water.		
Test the resultant solution with litmus		
paper.		
c) Divide the resultant solution into		
five portions;		
i) To the first portion, add neutral		
iron(III) chloride solution		
ii) To the second portion, add little		
sodium hydrogencarbonate solution		
iii) To the third portion, add 4-5 drops		
of Brady's reagent		

iv) To the fourth portion, add		
acidified potassium permanganate		
solution and heat.		
v) To the fifth portion, add 2cm ³ of		
Tollen's reagent and warm; then		
allow the mixture to stand.		
d) Comment on the nature of K		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	***************************************

6. You are provided with an organic compound W. You are required to carry out the tests below on W to identify its nature. Identify any gas(es) evolved. Record your observations and deductions in the table below

Tests	Observations	Deductions
a) Burn a small amount of W on a		
spatula end or in a dry porcelain dish		
b) To about 0.5cm ³ of W, add 1cm ³ of		
water, shake and test the resultant		
solution with litmus paper.		
c) To about 1cm ³ of W, add 3-4 drops		
of neutral iron(III) chloride solution		
d) To about 1cm ³ of W, add 3-4 drops		
of Brady's reagent		
e) To about 2cm ³ of W, add 4-5 drops		
of acidified potassium dichromate		

solution, heat, allow it to cool and use		
in part (f).		
f) To the mixture from (e), add 3-4		
drops of Brady's reagent.		
g) To about 2cm ³ of Lucas reagent,		
add 1cm ³ of W.		
Describe the nature of W.		
	•••••	

7. You are provided substance M which is an organic compound. You are required to determine the nature of M. carry out the following tests and identify any gas(es) evolved Record your observations and deductions in the table below

Tests	Observations	Deductions
a) Burn a small amount of M on		
a spatula		
b) To 1cm ³ of M, add 3cm ³ of		
water and shake. Divide the		
mixture into three parts		
i) To the first part of the solution,		
add 2-3 drops of iron(III)		
chloride solution.		
ii) To the second part of the		
solution, and 3-4 drops of neutral		
iron(III) chloride solution		

iii) To the third part of the		
solution, add 2-3 drops of		
acidified potassium dichromate		
solution and warm		
c) to 0.5cm3 of M in a test tube,		
add 2-3 drops of 2,4-		
dinitrophenyl hydrazine solution.		
(Brady's reagent)		
d) To about 1cm3 of M, add 2cm ³		
of ethanoic acid followed by 3		
drops of concentrated sulphuric		
acid and heat, pour the products		
in beaker of cold water.		
e) To 0.5cm ³ of M, add 2cm ³ of		
sodium hydroxide solution		
followed by aqueous iodine drop		
wise until in excess. Warm the		
mixture and leave to stand.		
f) To 1cm ³ of M, add 3cm ³ of		
Lucas' reagent and shake, and		
leave it to stand.		
g) Describe the nature of N	Л	

 	 •

8. You are provided substance L which is an organic compound. You are required to determine the nature of L. carry out the following tests and identify any gas(es) evolved. Record your observations and deductions in the table below

Tests	Observations	Deductions

a) Burn a small amount of L on a	
dry spatula or dry porcelain	
b) (i) Shake about half spatula	
endful of L with $2cm^3$ of sodium	
hydroxide solution.	
ii) Shake about half spatula	
endful of L with 2cm ³ of sodium	
hydroxide solution and add 2-3	
drops of litmus solution.	
c) Shake about half spatula	
endful of L with 2cm ³ of water	
and divide the solution into three	
parts.	
i) To the first part of the solution,	
add 2-3 drops of sodium	
hydrogen carbonate solution	
ii) To the second part, add 2-3	
drops of 2,4-dinitrophenyl	
hydrazine solution (Brady's	
reagent).	
iii) To the third part of the	
solution, add 2-3 drops of	
iron(III) chloride solution and	
warm	
d) Dissolve a spatula endful of L	
in about 5cm ³ of water. To the	

solution, add 1-2cm ³ of sodium	
hydroxide solution. Heat the	
mixture, cool and add 2-3 drops	
of silver nitrate solution and filter	
Keep both the filtrate and	
residue.	
e) To the residue, add dilute	
ammonia solution drop wise until	
in excess.	
f) To the filtrate, add equal	
volume of ethanol followed by 3-	
4 drops of concentrated sulphuric	
acid. Heat the mixture and allow	
it to cool.	
g) State the nature of L	

9. You are provided with an organic compound H. You are required to determine the nature of H. carry out the following tests and identify any gas(es) evolved

Record your observations and deductions in the table below

Tests	Observations	Deductions
a) Burn a small amount of H on a		
spatula end		

b) Add a spatula endful of H to about		
5cm ³ of sodium hydroxide solution		
c) To a spatula endful of H in a test		
tube, add 5cm ³ of water. Shake		
vigorously and test the resultant		
solution with litmus paper.		
Divide the resultant solution into three		
parts		
i) To the first part, add 2-3 drops of		
Brady's reagent		
ii) To the second part, add Iron(III)		
chloride solution		
iii) To the third part, add 2-3 drops of		
sodium hydrogen carbonate solution		
d) To 2cm³ of ethanol, add spatula		
endful of H followed by 3-4 drops of		
concentrated sulphuric acid and warm		
the mixture.		
e) From your results above, comment on	the nature of H.	
		•••••

THE END

Those at the top didn't just fall there, work hard...